
LABC Registered Construction Details Masonry

Registration Number: E11MCFF5

Build Up

External Masonry Cavity Wall

Masonry Outer Leaf ($\lambda = 0.77$)

100mm Aircrete Block Inner Leaf ($\lambda = 0.15$ W/mK)

Full Fill Insulation

Pitched Roof Eaves

150mm insulation (0.044W/mK) between rafters

50mm insulation (0.022W/mK) beneath rafters

Unventilated Rafter Void

LABC Registered Construction Details Masonry

Calculated ψ-values

	Inner leaf blockwork
	Aircrete Block λ = 0.15 W/mK
Cavity Insulation	ψ-value W/mK
100mm λ=0.037	0.023
150mm λ=0.037	0.034
100mm λ=0.032	0.029
150mm λ=0.032	0.039

Points to Watch

- Ensure cavities are kept clean of mortar snots and other debris during construction
- Ensure gap between wall plate and eaves ventilator is fully filled to maintain continuity of insulation through the junction.
- The eaves insulation should not compromise the cross flow ventilation or free water drainage below timber battens.
- Consider whether a vapour control plasterboard or separate vapour control barrier is required.
- Fire resistance will also be required for room in roof situations.
- Ensure eaves ventilation does not compromise free water drainage below the tiling battens.
- Fix ceiling plasterboard first and seal all gaps between ceiling and masonry then seal all penetrations through air barrier with flexible sealant.
- Read in conjunction with roof details E12 and E13.

