
LABC Registered Construction Details Masonry

Registration Number: E1MCPF1

Build Up

External Masonry Cavity Wall

Masonry Outer Leaf ($\lambda = 0.77$)

Ultra Lightweight Concrete Block Inner Leaf ($\lambda \le 0.28 \text{ W/mK}$)

Partial Fill Insulation

2mm Folded Steel Lintel with Perforated Baseplate

(Insulated Soffit)

LABC Registered Construction Details Masonry

Calculated ψ-values

	Inner leaf blockwork
	Ultra Lightweight Concrete Block λ ≤ 0.28 W/mK
Cavity Insulation	ψ-value W/mK
50mm λ=0.022	0.293
100mm λ=0.022	0.312

Points to Watch

- In certain situations, the lintel may also require fire resistance.
- Ensure that a 2mm thick lintel is available for the required opening width.
- A flexible sealant should be used between all interfaces of the internal air barrier and the window / door frame members.
- Ensure cavities are kept clean of mortar snots and other debris during construction.
- Cavity barriers may require an additional vertical DPC and/or cavity tray.
- Cavity barriers around openings may be formed by the window or door frame if the frame is steel
 (0.5mm thick) or timber (38mm thick).
- The minimum thickness of the base plate to allow it to act as a fire barrier is 0.5mm. The maximum thickness to conform with thermal bridging is 3mm

