
LABC Registered Construction Details Masonry

Registration Number: E1MCPF3

Build Up

External Masonry Cavity Wall

Masonry Outer Leaf ($\lambda = 0.77$)

Dense Concrete Block λ ≤1.33 W/mK

Partial Fill Insulation

2mm Folded Steel Lintel with Perforated Baseplate

(Insulated Soffit)

LABC Registered Construction Details Masonry

Calculated ψ-values

	Inner leaf blockwork
	Dense Concrete Block λ ≤1.33 W/mK
Cavity Insulation	ψ-value W/mK
50mm λ=0.022	0.399
100mm λ=0.022	0.401

Points to Watch

- In certain situations, the lintel may also require fire resistance.
- Ensure that a 2mm thick lintel is available for the required opening width.
- A flexible sealant should be used between all interfaces of the internal air barrier and the window / door frame members.
- Ensure cavities are kept clean of mortar snots and other debris during construction.
- Cavity barriers may require an additional vertical DPC and/or cavity tray.
- Cavity barriers around openings may be formed by the window or door frame if the frame is steel (0.5mm thick) or timber (38mm thick).
- The minimum thickness of the base plate to allow it to act as a fire barrier is 0.5mm. The maximum thickness to conform with thermal bridging is 3mm

